Using Abstraction in Multi-Rover Scheduling

Bradley J. Clement and Anthony C. Barrett
Jet Propulsion Laboratory
California Institute of Technology 4800 Oak Grove Drive, M/S 126-347
Pasadena, CA 91109-8099
{bclement, barrett } @aig.jpl.nasa.gov

Abstract

The trend toward multiple-spacecraft missions re-
quires autonomous teams of spacecraft to coordi-
nate their activities when sharing limited resources.
This paper describes how an iterative repair plan-
ner/scheduler can reason about the activities of
multiple spacecraft at abstract levels in order to
greatly improve the scheduling of their use of
shared resources. By finding consistent schedules
at abstract levels, refinement choices can be pre-
served for use in robust plan execution systems. We
present an algorithm for summarizing the metric re-
source requirements of an abstract activity based on
the resource usages of its potential refinements. We
find that reasoning about this summary information
and that of state constraints can offer exponential
improvements in the time to find consistent sched-
ules with an iterative repair planner. We analyti-
cally describe the conditions under which these im-
provements are made and show that sometimes the
extra overhead involved does not warrant their use.
We apply these techniques within the ASPEN plan-
ner/scheduler to a domain where a team of rovers
must coordinate their schedules to avoid conflicts
over shared resources.

1 Introduction

Autonomous spacecraft have recently used onboard plan-
ning and execution in order to improve the efficiency of
exploration by reducing explicit remote control. However,
a trend toward multiple-spacecraft missions requires au-
tonomous teams of spacecraft to collectively plan and execute
for goals that arise. In order to plan for coordinated execution,
the spacecraft need to reason about the population’s concur-
rent execution to detect and resolve conflicts among the indi-
vidual spacecrafts’ plans. For many applications, reasoning
about a planning problem at multiple levels of abstraction en-
hances planning and scheduling efficiency.

In an effort to reason about actions at abstract levels, Hi-
erarchical Task Network (HTN) planners [Erol, Hendler, &
Nau, 1994] represent abstract plan operators that decompose
into choices of action sequences that may also be abstract.

This work was performed at the Jet Propulsion Laboratory,
California Institute of Technology, under contract with the
National Aeronautics and Space Administration.

These planners exploit domain knowledge to reduce the space
of plans they generate. A domain expert can intuitively en-
code hierarchies of plan operators to guide the planner in
building an ordering of actions that achieves abstract tasks,
goals, and subgoals. Instead of building a plan from the be-
ginning forward (or end backward), the planner incrementally
refines abstract operators to eventually converge on specific
actions that achieve the higher level goals. By structuring the
refinement of goals, the planner indirectly prunes the space
of inconsistent or poor plans by avoiding sequences of opera-
tors that do not effectively achieve higher level goals. While
the planner is restricted to produce only those plans dictated
by the structure of the hierarchy, the domain expert can still
guarantee completeness by carefully structuring the abstract
plan operators. The domain expert has this same responsibil-
ity when crafting operators for non-hierarchical planners.

Previous research [Korf, 1987; Yang, 1990; Knoblock,
1991] has shown that, under certain restrictions, hierarchical
refinement search can reduce the search space by an exponen-
tial factor. Recent research has shown that the performance of
hierarchical planners can be greatly improved without these
restrictions by reasoning during refinement about the condi-
tions embodied by abstract plan operators [Clement & Dur-
fee, 1999; 2000]). These summarized conditions represent the
internal and external requirements and effects of the abstract
operator and those of the children in its decomposition. Us-
ing this information, a planner can resolve conflicts at abstract
levels and sometimes can find abstract solutions or determine
that particular decomposition choices are inconsistent. The
domain expert can derive these summary conditions for each
abstract operator in the domain offline before planning prob-
lems are encountered. Reasoning about this summary infor-
mation can exponentially reduce the cost of finding a first so-
lution and optimal solutions [Clement & Durfee, 2000].

Iterative repair planners commonly use scheduling and
constraint satisfaction techniques for handling large numbers
of activities and metric resources. We extend summary in-
formation to additionally include a representation for sum-
marizing the metric resource usages of an abstract activity’s
decompositions. We demonstrate the benefits of abstrac-
tion in ASPEN [Chien et al., 2000] (an iterative repair plan-
ner/scheduler) by using algorithms and techniques for effec-
tively reasoning about this summary information.

While planning efficiency is a major focus of this approach,
another is the support of flexible plan execution systems such
as PRS [Georgeff & Lansky, 19861, UMPRS [Lee et al.,
1994], RAPS [Firby, 19891, JAM [Huber, 1999]etc., that

similarly exploit hierarchical plan spaces. Rather than refine
abstract plan operators into a detailed end-to-end plan, how-
ever, these systems interleave refinement with execution. By
postponing refinement until absolutely necessary, such sys-
tems leave themselves flexibility to choose refinements that
best match current circumstances. However, this means that
refinement decisions at abstract levels are made and acted
upon before all of the detailed refinements need be made.
If such refinements at abstract levels introduce unresolvable
conflicts at detailed levels, the system ultimately gets stuck
part way through a plan that cannot be completed. While
backtracking is possible for HTN planning (since no actions
are taken until plans are completely formed), it might not
be possible when some (irreversible) plan steps have already
been taken. It is therefore critical that the specifications of ab-
stract plan operators be rich enough to summarize all of the
relevant refinements to anticipate and avoid such conflicts.
Using summary information, a planner can resolve conflicts
at abstract levels while preserving refinement choices under-
neath that can be used in robust execution systems to handle
unexpected or unknown events and to provide some ability to
recover from failure.

This research makes the following contributions:

e An algorithm summarizing metric resource usages for
abstract activities;

o Complexity analyses showing that schedule operations
are exponentially cheaper at higher levels of abstraction
when summarizing activities results in fewer reserva-
tions and temporal constraints;

e Experiments in a multi-rover domain that show that
summary information enables a planner to find solu-
tions (consistent schedules) more quickly under the con-
ditions reported in the complexity analyses and that re-
veal conditions under which summary information can
introduce unnecessary overhead,

¢ An empirical comparison of search techniques for di-
recting the refinement of abstract activities based on con-
flicts over summarized reservations, showing how sum-
mary information can further improve performance in
finding solutions.

2 Heuristic Iterative Repair

While HTN planners commonly take a generative least com-
mitment approach to problem solving, research in the OR
community illustrates that a simple local search is surpris-
ing effective [Papadimitriou & Steiglitz, 1998]. Planning via
heuristic iterative repair involves using a local search to gen-
erate a plan. The search starts with an initial flawed plan
and iteratively chooses a flaw, chooses a repair method, and
changes the plan by applying the method. Unlike generative
planning, the local search never backtracks. The repair meth-
ods can add, change, and remove features from the current
plan. Since taking a random walk through a large space of
plans is extremely inefficient, heuristics guide the choices by
determining the probability distributions for each choice. We
build on this approach to planning by using the ASPEN plan-
ner [Chien et al., 2000].

ASPEN lets a domain expert specify two kinds of state
constraints. A must-be constraint is a requirement that
a state variable must be a specified value throughout the
duration of the activity. For example, a traf fic light
state variable may take on the values red, yellow, or
green. A cross.intersection activity could require that

traf ficlight must-be green. A change-to constraint
changes the value of a state variable to a specified value.
So, a schedule may contain periodic activities to change
traf ficlight from red to green, green to yellow, and yel-
low to red. Valid transitions can also be specified for state
variables such that ASPEN recognizes a change from green
to red as a conflict.

Resource reservations in ASPEN can be made for different
types of resources. A reservation on a depletable resource
has an effect that carries after the activity finishes execut-
ing. A non-depletable resource reservation only affects the
resource value during the activity’s execution. These reserva-
tions are usage amounts that can be positive or negative. A
positive usage depletes the resource, and a negative value re-
stores the resource. An activity places a resource reservation
on a timeline that tracks its resultant state over the time span
of the schedule. Because timeline computations are central
to scheduling operations, they must be simple. The value of
a timeline unit (a subinterval on the timeline where the value
does not change) is computed assuming that resource deple-
tion and renewal occurs at the beginning of the reservation
interval. While this assumption is simplistic, it results in ex-
pedient schedule operations, and domains can still be mod-
eled realistically by using multiple reservations to represent a
more complex one and by constraining the temporal interac-
tions of activities. A timeline unit value is the sum of all reser-
vation values overlapping the subinterval and, in the case of a
depletable resource, all downstream values from reservations
of activities completed by the start of the subinterval.

Figure 1 gives an example of how reservations are made.
Imagine that a rover uses battery energy for many of its tasks
and can restore it using solar panels. Suppose it has a choice
of two ways to perform a science experiment. It can either
dig and collect a sample, or take images of a rock. In both
cases, the solar panels are used to restore energy throughout
the experiment. Figure 1a shows how a domain expert might
model the decomposition of an experiment activity. Fig-
ure 1b shows how a scheduler places reservations on the bat-
tery energy timeline for two different decompositions of the
analyze activity. The abstract experiment activity contains
its children, and the sunbathe activity executes concurrently
with the analyze activity.

ASPEN uses hierarchy to schedule groups of related activ-
ities using a technique called aggregation [Knight, Rabideau,
& Chien, 2000]. The aggregated reservations in Figure lc
merge the individual reservations of the activities into end-to-
end reservations, creating a single profile. A scheduler can
then consider dropping this usage profile on the timeline in
different places in order to find a suitable place in the sched-
ule to place or move the activity hierarchy. Because the first
soak rays activity and dig start at the same time, and reser-
vation usage occurs at the beginning of the reservation inter-
val, their usage is simply computed as the sum of -5 and 60
giving an aggregated value of 55. Again, this modeling of
usage is simplistic since realistically the local usage in this
interval ranges from -5 to 60. However, if this simplification
potentially causes inconsistent schedules for the domain, the
domain expert can easily model the acttvities to never start si-
multaneously or break up the reservations to represent more
gradual usage as done with the sunbathe and soak rays ac-
tivities. These aggregated profiles are only computed for ac-
tivities already added to the schedule, so, in contrast to sum-
mary information, they do not represent the temporal flexi-

a) experiment

-— T

A/i}@l; analyzc
T T
take sample take image
soak rays soak rays soak rays dig collect sample US€ 20
use -5 use -5 use -5 use 60 usc 30
b) experiment | | experiment r
t 1 I !
soak rays | soak rays soak rays soak rays soak rays, soak rays
N : y . y
-5 -5 -5 -5 -5 -5
dig collcet sample . take image F
I 1
60 30 20
©) | aggregated experiment ,_aggrogated experiment 1
I T T T T T T T 7
55 505080 75 75 15 10 5 5
4 - summarized experiment |

<[5, 50], [15, 80], [5, 75] >

, ,_summarized experiment
T 1

<[-15, 601, [75, 90], [75, 75] >

e, experiment
I

1
soak rays | soak rays soak rays
| T 4 1

-5 -5 -5
di collect samy lf
60g 30 -

Figure 1: Resource profiles for a rover to perform a science
experiment.

bility and usage ranges of reservations across decomposition
choices of activities that have not been decomposed, as dis-
cussed in the next section.

3 Summarizing Reservations

As described in [Clement & Durfee, 1999], summary infor-
mation captures state information for STRIPS-like plan op-
erators [Fikes & J., 1971]. This paper describes how to ex-
tend this work for combined planning/scheduling problems.
ASPEN’s notation for reservations differs somewhat and ad-
ditionally represents metric resource usages (see Section 2).
Here we describe how we summarize this information offline
for combined planner/schedulers such as ASPEN.

3.1 Summarizing State Reservations

With only a slight translation in syntax, we can use an ex-
isting algorithm to summarize state constraints. We translate
activities with state reservations into CHiPs (concurrent hier-
archical plans), similar to HTNs, and summarize them using
the algorithm described in [Clement & Durfee, 1999]. The
summary information for a CHiP includes summary pre-, in-,
and postconditions. A summary precondition of a CHIP p is
an externally required condition in p’s refinement that must be
met by another CHiP or the initial state in order for p to ex-
ecute successfully. A summary postcondition is an external
effect of the CHiP’s refinement (not undone internally). A
summary incondition is any condition required or asserted in
the CHiP’s refinement within the interval of the CHiP’s exe-
cution. These conditions, based on STRIPS operators, are ad-
ditions, deletions, or requirements of propositional variables
in the state. In addition, a summary condition is either must
or may depending on whether it must hold in all or some de-
compositions of the plan operator. It is also either first, last,
sometimes, or always indicating when in the execution in-
terval it must hold.

We translate a must-be reservation in ASPEN into a must,
first precondition and a must, always incondition for the
corresponding CHiP. For a change-to reservation (described
in Section 2), if it is specified to occur at the end of the activ-
ity, we translate the reservation into a must, last postcondi-
tion. If occurring at the beginning of interval, we translate the
reservation into a must, sometimes incondition and a must,
sometimes postcondition.! For example, suppose as part of
the take sample activity (in Figure 1), a compartment for
the sample is opened during the dig activity. The dig activity
could have the state reservation door change-to open at end.?
The collect sample activity could have the reservations door
must-be open and door change-to closed at end. Then, after
translating the reservations and summarizing take sample,
take sample’s summary preconditions would be empty be-
cause the only precondition of its children is must, first (=
door open) in collect sample, but it is achieved by the dig
activity’s postcondition must, last (= door open), so it is
not an external precondition. take sample’s only incondi-
tion would be must, sometimes (= door open) because it
is both an intermediate effect and requirement of the subac-
tivities. take sample’s only summary postcondition would
be must, last (= door closed) because it is an external ef-
fect that is asserted at the end of the take sample activity.
The summary information for the analyze activity would in-
clude the same summary conditions as take sample, but all
of the conditions would be may instead of must because the
take image activity has no conditions on the compartment
door, so the conditions only may need to hold for analyze
depending on which decomposition is chosen for execution.

The state summarization algorithm [Clement & Durfee,
1999] recursively propagates summary conditions from the
leaves of the hierarchy upwards. For any abstract CHiP, the
algorithm derives its summary information from its immedi-
ate children with a complexity of O(n2¢?) for n activities in
the hierarchy each with no more than ¢ conditions.

3.2 Summarizing Resource Reservations

In order to extend summary information to include met-
ric resources, we define a new representation and algorithm
for summarizing metric resource usage. A summarized re-
source reservation represents ranges of values representing
the potential local and downstream usage amounts of a re-
source. 1t is a tuple {local_min_range, local_maz_range,
downstream_range). The local usage occurs within the in-
terval of the activity, and the downstream usage represents the
depleted usage seen after the the activity finishes executing.
The ranges of these usages capture the multiple usage pro-
files of an activity that has multiple decomposition choices as
well as temporal uncertainty when the domain only specifies
partial orderings of activities.

Figure 1d shows how the summarized reservation repre-
sents multiple profiles for different decomposition choices.
The local minimum usage ranges from 5 in the decomposition
to the right in Figure 1c to 50 in the left decomposition. The
local maximum usage ranges from 15 (right) to 80 (left). The
downstream usages for the two decompositions are 5 (right)
and 75 (left), giving the downstream range.

Tnconditions in CHiPs were not defined to be specified as first.
2«at end” is a tag for specifying that the state change occurs at
the end of the activity’s interval.

Capturing Uncertainty in Decompositions and Temporal
Ordering
So, the local min, local max, and downstream values cap-
ture changes in the usage over time (usage profiles), and the
ranges capture values varying due to uncertainty in choices
of decomposition. We represent both the minimum and max-
imum local ranges because, in general, a conflict could occur
from violating both the minimum value and the maximum
capacity. This differentiation along with usage ranges allows
the planner to distinguish between potential and definite con-
flicts. For the example in Figure 1, if the battery energy has a
capacity of 100 and is initially charged to 75, the summarized
reservation in Figure 1d indicates that there might be a local
conflict because the maximum local usage ranges from 15 to
80. If the battery were only charged to 10, there would def-
initely be a conflict. However, if fully charged to 100, there
definitely would not be a conflict. This parallels the use of
mmust and may in summary state conditions where an activity
maust or may clobber the conditions of another. We further
discuss the use of this modal information in Section 3.4.
Now we describe how summary reservations also cap-
ture temporal uncertainty. For example, the activities in
experiment’s refinement might not be constrained strictly
as shown in Figure 1b. If the only temporal constraints
were that soak rays activities must meet end-to-end and that
dig must precede collect sample, then the execution profile
could have the ordering in Figure le. Summary information
is computed for the domain and used for abstract activities
before they are refined. So, we compute resource summary
reservations considering all possible orderings of the activi-
ties within the constraints specified for the domain. For the
two temporal constraints that we just mentioned, the sum-
mary reservation (ignoring the take image branch) is com-
puted as shown in Figure le. If the sunbathe activities
precede the take sample activities, the minimum value of
local _min_range is -15. The maximum of local_min_range
is 60 because the sunbathe activities could follow the dig
activity. In contrast, aggregate reservations represent only to-
tally ordered placements of reservations with fixed start and
end times.

Resource Summarization Algorithm

Like state reservations, the summarization algorithm recur-
sively summarizes reservations from the primitive activities
up the hierarchy, computing each abstract activity’s reser-
vation from the summarized reservations of its immediate
children. For example, consider summarizing p’s reserva-
tion of some resource from the summarized reservations its
children, a, b, and ¢, in Figure 2. The range values for p’s
summarized reservation can be determined by considering
the possible usage values of the children in the subintervals
of p created by mapping the endpoints of the child activi-
ties onto the interval of p (like the aggregated reservations in
Figure 1¢). Computing pl, the minimum possible usage in
the combined profile, is not difficult. It is just the minimum
of the children’s minimum usages in the subintervals of p:
min(cl, bl +cl,al + bl + c1,al + bl + ¢5,a5 + bl +¢5).
However, computing p2, the upper bound on the minimum
usage, is not so obvious. One simple algorithm would be to
take the minimum of the children’s maximum usages in the
subintervals. This would give p2 = min(c4,b4 + c4,a4 +
b4+ c4, a4+ b4 + 6, a6 + b4 + c6). It is not obvious that this
is a correct or incorrect value, but if we use the same algo-
rithm for computing ¢2, we have ¢2 = min(d4, d6, d6 + e4).

a<[al, a2}, [a3, a4], [a5, a6]> d <[dl1, d2], [d3, d4], [d5, d6]>

b <[bl, b2], [b3, b4}, [bS, b6]>
[N .]
— ‘

-

e <[el, e2], [e3, ed], [e5, e6]>

c <[cl,202], fc}, c4], [c:§5, cé]>

\ i
r T

S N S B i 1 i P
LI T I T =

p <[p1, p2]. [p3, p4), [p5, p6}> q<[ql, a2}, [43, 94], [a5, q6)>

Figure 2: Summarizing the resources of two abstract activi-
ties.

This is incorrect because we know that the minimum usage
in the first subinterval of ¢ can be at most d2, which is less
than all values in the formula just given for ¢2. ¢2 is actually
min(d2, d6, d6+e2). The problem with the simple algorithm
is that it does not consider that a minimum usage must oc-
cur in some subinterval for each activity. Thus, in computing
the upper bound of the local min_range (g2), our algorithm
(below) considers all profiles where minimum usages of the
children are placed in different subintervals. The algorithm
summarizes a particular abstract activity by separately pro-
cessing each resource timeline affected by the parent or chil-
dren. The input for the following algorithm actually includes
only the activities placing a reservation on the resource time-
line in question, and the calculation is based on the already
summarized resource reservations of the children and any un-
summarized reservation of the parent. Below, “Ib” and “ub”
refer to lower and upper bounds.

Algorithm Summarize Resource-Timeline Reservations
Input: parent and child activities, temporal constraints
Output: summarized resource reservation for parent
begin
if child activities are decomposition choices
minval < Wingeactivities (1b(local_min_range(a)))
mazval +— WaXagactivities (Ub (local min_range(a))) ;
local .min_range « [minval, mazvall;
minval < MiNggactivities (1b(local-maz-range(a)))
mazval < MaXaeactivities (Ub(local - maz_range(a))) ;
local-maz-range +— [minval, mazvall;
minval + miNggcactivities (1b(downstream.range(a})) ;
mazval ¢ MaXacactivities (Ub(downstream-range(a))) ;
downstream._range <~ [minval, mazvall;
return (local.min_range,local_maz_range,
downstream.range) ;
end if

// Compute local values
use ([z, z], [z, =], [z, z]) for the parent’s
reservation value of z;
minmin.args, marmin_args, minmaz.args, marmazr.args < 0;
for each consistent sequence of interval endpoints o
according to temporal constraints
min.args < 0;
maz.args + 0;
for all possible combinations of resource profiles
of all activities based on their summarized
resource reservations
inner_args « 0;
for each endpoint e in o
i + subinterval after e and before any
following endpoint;
sum <+ sum of reservation values
contributed by activities overlapping %;
insert sum into inner.args;
end for
insert min{inner.args) into min.args;
insert max(inner.args) into maz_args;
end for
insert min(min_args) into minmin.args;
ingert max(min-args) into mazmin-args;
insert win{min_args) into minmaex.args;
insert max(min.args) into mazmaz-args;

end for
local min_range < [min(minmin_.args), max(minmaz_args)];
local_maz_range +— [min(mazmin.args), max(mazmaz.args)];

// Compute downstream values

min_depleted +- Za@c“v“i” min{downstream.range(a));
maz.-depleted Zaeumj“,g maz{downstream.-range{a));
downstream.range < [min.depleted, max.depleted] ;

return {local_min_range, local_.maz_range, downstream_range);
end

We represent the output reservation in terms of formulas
with arguments because ASPEN reservations can be vari-
ables, with values bound to timeline values, other parame-
ters, or user-defined functions. For example, a function of an
activity’s duration can determine how much battery energy is
used. The formulas enable the summarization to capture com-
plex specifications of the domain by reasoning about ranges
of parameter values until they are grounded by other variables
or functions in the domain. The combinations of profiles in
the inner loop come from placing different range values of the
summarized reservations into the subintervals (like the aggre-
gated reservations in Figure 1¢). The algorithm is exponential
in the number of activities because it consider all orderings of
the activities allowed by specified constraints, and exponen-
tial again in considering combinations of profiles. However,
the number of immediate child activities is bounded by a con-
stant, such that the complexity of summarizing an activity is
just linear in the number of resources summarized. We do not
give further complexity details here because the algorithm is
offline, and the paper focuses on scheduling complexity.

As mentioned in the description of the example in Figure
2, the algorithm limits the number of reservation profiles that
it considers by reasoning only about minimum and maximum
reservations. Here we illustrate how the algorithm does this
through an example. For the example in Figure 1, consider
summarizing the battery energy usage of the sunbathe and
analyze activities for experiment. Figure 3 shows how the
upper bound of the local_min_range of experiment is com-
puted for a particular ordering of its child activities. Figure
3a illustrates how subintervals are divided by the endpoints
of sunbathe and analyze. The algorithm chooses the upper
bound of the range values of the child activities’ summarized
reservations since they will dominate the other values in the
outermost max formula. However, a local minimum reserva-
tion must occur in some subinterval. Since we are trying to
find the upper bound of the local range, we can generate a
profile by placing the child activity’s local min upper bound
in one of the subintervals and assume that the local max up-
per bound is placed in all other local subintervals since it will
dominate all other cases in the outermost max formula. So,
we must place 60 (analyze’s local_min_range upper bound)
and -15 (the local_min_range upper bound of sunbathe)
each in one of the two local subintervals, giving each two pos-
sible maximum profiles for mapping the local minimum and
maximum into the two local subintervals as shown in Fig-
ure 3b. This means we only need to generate n profiles for
the n local subintervals. Figure 3c shows the cross product
of the two activities’ profiles giving four possible combined
profiles. The local_min_range upper bound is computed by
taking the minimum of the reservations summed on the local
subintervals for each combined profile and then taking the
maximum of the result, as shown in Figure 3d. The algorithm
inserts other min formulas for combined profiles of other or-

a) sunbathe <[-15, -15], (-5, -5 |, [-15, -15] >
i 4
b +

b) sunbathe’s individual profiles | analyze <[20, 6,0 1120, 90, [20'5 90 |>
b t
L5 -15 -15 v V ¢
' ‘ ' I .
FIS ‘ -5 ' -15) 6 cxp;(;im]e;:t’s cor;l(;inc;d proﬁlcs% s
lyze's individual profit E } ‘
analyze’s individual profiles
o Zo 90P o 06055 9.1 (9015
e 4 4 1
F t t t L 60 §90-5 ; 90-15 ’90~I5
L % 60 90 . 90 L %0 60-15 90-5 90-15
t t t t i t +— t
d) max(local_min_range) =
max(min(...), ..., min(60, 75, 85), min(90, 55, 75), min(60, 85, 75), min(90, 45, 85), ...) =60

Figure 3: Deriving experiment’s local_min_range upper
bound for the battery energy resource. a) The subintervals of
experiment’s combined profile for an ordering of sunbathe
and analyze. b) The possible mapping of maximum reserva-
tions to the subintervals. c¢) The combined profiles as a cross
product of the individual profiles in 3b. d) The insertion of
the summed values for the four profiles into the formula.

derings of the activities.

3.3 Computing Summarized Timelines in ASPEN

Here we describe how ASPEN uses summarized reservations
to update the timeline values of resource and state variables
and to detect conflicts. Timeline conflicts are often repaired

" by moving activities, which involves lifting their reservations

from the timelines and placing them again at the their new
time locations. Each timeline unit (a subinterval between the
endpoints of reservation placements) on the timeline has a
distinct value. ASPEN computes these values by merging lo-
cal values of overlapping reservations and propagating down-
stream effects of state changing and depletable resource reser-
vations. ASPEN computes summary values for timeline units
through a framework for handling user-definable state infor-
mation [Knight, Rabideau, & Chien, 2001). By only pro-
viding functions that compute timeline unit values and define
conflicts, ASPEN is able to schedule activities with summa-
rized reservations. These computations are simplifications of
the summarization algorithms and are O(1) when parameters
are grounded.

We compute state unit values using simplifications of al-
gorithms for summarizing CHiPs [Clement & Durfee, 1999].
We merge overlapping reservations by computing the sum-
mary information for CHiPs with the equals temporal rela-
tion. Likewise, we propagate downstream effects of adjacent
timeline units by summarizing their corresponding CHiPs
with the meets relation. The merge and downstream com-
putations always act on pairs of activities, making each such
computation O(1). We detect a state conflict when one CHiP
clobbers another, and we use ASPEN’s algorithm for finding
transition conflicts among possible states that must or may
hold. We compute summary resource unit values similarly
by summarizing activities with equals and meets temporal
relations for the merge and downstream cases respectively.

These resource computations can be more complex if the
values in the formulas are not yet grounded. Building the
new formulas takes constant time, but determining conflicts
involves computing the formulas for the ranges of the un-
grounded values and is O(p) for p ungrounded parameters.
For each timeline unit computation, we simplify the formu-
las as much as possible (again O(p)), but delaying simplifi-
cation could improve performance. The complexity analysis

and experiments in the following sections do not include this
added complexity, but, domain models have generally been
designed to ground all parameter values before attempting to
repair conflicts, so this complexity will not be incurred for
carefully designed domain models. This a subject for future
research.

3.4 Using Modal Information in Summarized
Reservations

In Section 3.2, we mentioned how a planner can use the
modal information represented by ranges in summarized re-
source reservations and the existence and timing informa-
tion for summarized state reservations to determine whether
abstract activities must or may interact in certain ways
(e.g. clobber). In this section, we discuss how backtracking
and iterative repair planners use this information differently.

Backtracking planners that include ordering constraints in
the search state can use this modal information to determine
that an abstract schedule has no conflicts, may have some
conflicts, or has some unresolvable conflicts. In the first case,
the planner avoids resolving the same conflicts at lower lev-
els in the activity hierarchies, where the complexity grows
exponentially. In the latter case, the planner can backtrack in
the decomposition and avoid the search space involved with
trying to repair the unresolvable conflicts at the lower lev-
els. However, iterative repair planners that do not backtrack
cannot determine whether there are unresolvable conflicts, so
they cannot prune the search space in the same way. But,
in determining that there are definitely no conflicts, the plan-
ner does not need to differentiate between must and may.
It can also ignore the upper bound of the local_min_range
and the lower bound of the local_max_range—only a local
min and max are needed to check whether usage exceeds the
maximum capacity or falls below the minimum value. It re-
mains unclear how a non-backtracking planner can exploit
this modal information—this is a subject for future research.

If we discard the must/may information, a backtracking
planner cannot determine unresolvable conflicts because it
does not know whether the conditions in conflict will need
to hold for all decompositions (must). However, if we
discard the upper bound of the local_min_range and the
lower bound of the local maz_range, a backtracking plan-
ner can still discover an unresolvable conflict among ab-
stract activities if the minimum usages exceed the maximum
capacity or the maximum usages fall below the minimum
value of the resource. By also keeping track of the up-
per bound of the local_min_range and the lower bound of
the local max_range, the planner can discover more unre-
solvable conflicts because it is generally easier to discover
cases when the lower bound of the local.max_range ex-
ceeds maximum capacity and when the upper bound of the
local_min_range falls below the minimum value. However,
there is more overhead for computing these extra two values
during search, so additional research is needed to determine
the effectiveness of using these values.

4 Abstract Reasoning for Iterative Repair

In this section, we describe techniques for using summary
information in heuristic search to reason at abstract levels ef-
fectively and discuss the complexity advantages. Reasoning
about abstract plan operators using summary information can
result in exponential planning performance gains for back-
tracking hierarchical planners [Clement & Durfee, 2000]. In

iterative repair planning, the aggregation technique similarly
outperforms the movement of activities individually [Knight,
Rabideau, & Chien, 2000]. But, can summary information
be used in an iterative repair planner to improve performance
when aggregation is already used? We demonstrate that it
makes exponential improvements by collapsing summarized
reservations and temporal constraints at abstract levels. First,
we analyze the complexity of moving abstract and detailed
activities using aggregation. Then we describe how a heuris-
tic iterative repair planner can exploit summary information.

4.1 Complexity of Scheduling for Aggregation and
Summary Information

To move a hierarchy of activities using aggregation, valid in-
tervals must be computed for each resource for which the hi-
erarchy makes reservations. These valid intervals are inter-
sected for the valid placement intervals for the abstract activ-
ity and its children. The complexity of computing the set of
valid intervals for a resource is O(rR) where r is the number
of reservations an abstract activity makes with its children
for the timeline variable, and R is the number of reserva-
tions made by other activities in the schedule on the timeline
[Knight, Rabideau, & Chien, 2000]. If there are n similar ac-

- tivity hierarchies in the entire schedule, then R = (n — 1)r,

and the complexity of computing valid intervals is O{nr?).
But this computation is done for each of ¢ timeline variables
(often constant for a domain), so moving an activity will have
a complexity of O(¢nr?). The intersection of valid intervals
across timelines does not increase the complexity. Its com-
plexity is O(tnr) because there can be at most nr valid in-
tervals for each timeline; intersecting intervals for a pair of
timelines is linear with the number of intervals; and only -1
pairs of timelines need to be intersected to get the intersection
of the set.

The summary information of an abstract activity represents
all of the reservations of its children, but if the children share
reservations over the same resource, this information is col-
lapsed into a single summarized reservation in the abstract ac-
tivity. Therefore, when moving an abstract activity, the num-
ber of reservations involved may be far fewer depending on
the domain. If the scheduler is trying to place a summarized
abstract activity among other summarized activities, the com-
putation of valid placement intervals can be greatly reduced
because the r in O(tnr?) is smaller. We now consider two
extreme cases where reservations can be fully collapsed and
where they cannot be collapsed at all.

In the case that all activities in a hierarchy have reserva-
tions on the same timelines, the number of reservations in a
hierarchy is O(b%) for a hierarchy of depth d and branching
factor (number of child activities per parent) b. In aggrega-
tion, where hierarchies are fully detailed first, this means that
the complexity of moving an activity is O(tnb*?) because
r = O(b%). Now consider using aggregation for moving
a partially expanded hierarchy where the leaves are summa-
rized abstract activities. If all hierarchies in the schedule are
decomposed to level 4, there are O(b?) activities in a hierar-
chy, each placing one summarized reservation representing
those of all of the yet undetailed subactivities beneath it on
each timeline. So r = O(b?), and the complexity of moving
the activity is O(tnb*"). Thus, moving an abstract activity

using summary information can be a multiple of O(b*(4-%)
times faster than for aggregation.

The other extreme is when all of the activities place reser-
vations on different timelines. In this case, 7 = 1 because any
hierarchy can only make one reservation per timeline. Fully
detailed hierarchies contain ¢ = O(b?) different timelines for
which aggregation computes valid intervals. So, the complex-
ity of moving an activity in this case is O(nb?). If moving a
summarized abstract activity where all activities in the sched-
ule are decomposed to level 4, ¢ is the same because the ab-
stract activity summarizes all reservations for each subactiv-
ity in the hierarchy beneath it, and each of those reservations
are on different timelines such that no reservations combine
when summarized. Thus, the complexity for moving a par-
tially expanded hierarchy is the same as for a fully expanded
one. Experimental results in Section 5 exhibit great improve-
ment for cases when activities make reservations over com-
mon resources.

Along another dimension, scheduling summarized activi-
ties is exponentially faster because it reduces the number of
temporal constraints among the activities. When activity hi-
erarchies are moved with aggregation, all of the local tempo-
ral constraints are preserved. However, there are not always
valid intervals to move the entire hierarchy because the com-
bined group of reservations can be overconstrained. (i.e. The
current fixed temporal relationships in the hierarchy are not
feasible.) However, the scheduler can move less constrain-
ing lower level activities to resolve the conflict. In this case,
temporal constraints may be violated among the moved activ-
ity’s parent and siblings. The scheduler can then move and/or
adjust the durations of the parent and siblings to resolve the
conflicts, but these movements can affect higher level tem-
poral constraints or even produce other conflicts. At a depth
level ¢ in a hierarchy with decompositions branching with a
factor b, the activity movement can affect b* siblings in the
worst case and produce an exponential number of conflicts.
Thus, if all conflicts can be resolved at an abstract level 1,
O(b%7*) scheduling operations can be avoided. In Section 5,
we present empirical data showing the exponential growth of
computation with respect to the depth at which ASPEN finds
solutions and find many cases where summary information
completed the search almost immediately because it found
solutions at high levels of abstraction.

4.2 Decomposition Heuristics for Iterative Repair

Despite this optimistic complexity, reasoning about summa-
rized reservations only translates to better performance if the
movement of summarized activities resolves conflicts and ad-
vances the search toward a solution. There may be no way
to resolve conflicts among abstract activities without decom-
posing them into more detailed activities. So when should
summary information be used to reason about abstract activ-
ities, and when and how should they be decomposed? Here,
we describe techniques for reasoning about summary infor-
mation as abstract activities are detailed.

We explored two approaches that reason about activities
from the top-level of abstraction down in the manner de-
scribed in [Clement & Durfee, 2000]. Initially, the plan-
ner only reasons about the summary information of fully ab-
stracted activities. As the planner manipulates the sched-
ule, activities are gradually decomposed to open up new
opportunites for resolving conflicts using the more detailed
child activities. One strategy (that we will refer to as level-
decomposition) is to interleave repair with decomposition as
separate steps. Step 1) The planner repairs the current sched-

ule until the number of conflicts cannot be reduced. Step 2)
It decomposes all abstract activities one level down and re-
turns to Step 1. By only spending enough time at a particular
level of expansion that appears effective, the planner attempts
to find the highest decomposition level where solutions exist
without wasting time at any level.

Another approach is to use decomposition as one of the re-
pair methods that can be applied to a conflict so that the plan-
ner gradually decomposes activities that are involved in con-
flicts. This strategy tends to decompose the activities involved
in greater numbers of conflicts since involved activities are
potentially expanded when a conflict is repaired. The idea
is that the scheduler can break overconstrained activities into
smaller pieces to offer more flexibility in rooting out the con-
flicts. This resembles the EMTF (expand-most-threats-first)
[Clement & Durfee, 2000] heuristic that expands (decom-
poses) activities involved in conflicts before others. (Thus,
we will refer to this heuristic as EMTF throughout the rest
of this paper.) Activities that are not involved in conflicts are
rarely expanded because they are less likely chosen for re-
pair. Experiments in Section 5 suggest that EMTF performs
better than level-decomposition, but only when EMTF uses
decomposition rates suited for the problem domain.

Another heuristic for improving planning performance
prefers decomposition choices that lead to fewer conflicts.
Using summary information, the planner can test each child
activity by decomposing to the child and replacing the par-
ent’s summarized reservations that summarize the children
with the particular child’s summarized reservations. For each
child, the number of conflicts in the schedule are counted,
and the child creating the fewest conflicts is chosen.? This is
the fewest-threats-first (FTF) heuristic that was demonstrated
to be very effective in pruning the search space in a back-
tracking planner [Clement & Durfee, 2000]. Consistently,
the experiments in Section 5 report that using FTF can find
solutions much more quickly but only when decomposition
choices cause significantly varying numbers of conflicts.

5 Multi-Rover Domain Experiments

The experiments we describe here show that, for our chosen
domain, summary information improves performance signif-
icantly when activities within the same hierarchy make reser-
vations over the same resource, and solutions at some level
of abstraction are found. At the same time, we find cases
where reasoning at abstract levels incurs significant overhead
when solutions are only found at deeper levels. However, in
domains where decompositon choices are critical, we show
that this overhead is insignificant because the FTF heuris-
tic finds solutions at deeper levels with better performance.
These experiments also show that the EMTF heuristic outper-
forms level-decomposition for certain decomposition rates,
raising new research questions. In addition, we show that
the time to find a solution increases dramatically with the
depth where solutions are found, supporting the notion that
more constraints at deeper levels exponentially complicates
the scheduling problem.

Our problems consist of a team of rovers that must resolve
conflicts over shared resources. We gencrate two classes of
maps within which the rovers move. For one, we randomly

30r, in stochastic planners like ASPEN, the children are cho-
sen with probability decreasing with their respective number of con-
flicts.

400

g

2
3

Aggregation CPU seconds
g
Aggregation CPU seconds

g
g

1000 2000 3000 4000 5000 1000 2000
Summary Information + Aggregation CPY Seconds

3000 4000 5000 5000 ° 1000 2000 3000 4000 5000 6000
Summary Information + Aggregation CPU seconds

3
8

Aggregation CPU seconds

1000

Summary Information + Aggregation CPU secands

Figure 4: Plots for the no channel, mixed, and channel only domains

generate a map by placing paths among random waypoints
in a field using a Delaunay triangulation algorithm. For the
other, we generate corridor paths from a circle of locations
with three paths from the center to points on the circle to rep-
resent narrow paths around obstacles. This latter map is used
only for an experiment evaluating the FTF heuristic. We then
select a subset of the points as science locations and use a
simple multiple traveling salesman algorithm to assign routes
for the rovers to traverse and perform experiments. Paths be-
tween waypoints are assigned random capacities such that
either one, two, or three rovers can traverse a path simulta-
neously; only one rover can be at any waypoint; and rovers
may not traverse paths in opposite directions. In addition,
rovers must communicate with the lander for telemetry using
a shared channel of fixed bandwidth. Depending on the ter-
rain between waypoints, the required bandwidth varies. 80
problems were generated for two to five rovers, three to six
science locations per rover, and 9 to 105 waypoints. In gen-
eral problems that contain fewer waypoints and more science
locations are more difficult because there are more interac-
tions among the rovers. Schedules ranged in size from 180
to 1300 activities. Note that the experiments use a prototype
interface in order to use summary information, and some of
ASPEN’s optimized scheduling techniques could not be used.
However, we report relative performance, making the com-
parisons fair.

Schedules consist of an abstract activity for each rover that
decomposes into activities for visiting each assigned science
location. Those activities decompose into the three short-
est paths through the waypoints to the target science loca-
tion. The paths decompose into movements between way-
points. Additional levels of hierarchy were introduced for
longer paths in order to keep the offline resource summariza-
tion tractable.

We compare the use of iterative repair with and without
summarization in the context of aggregation for three varia-
tions of the triangulated field domain. The use of summary in-
formation includes the EMTF and FTF heuristics for decom-
position. One domain excludes the communications channel
resource (no channel); one excludes the path capacity restric-
tions (channel only); and the other includes all mentioned re-
sources mixed). Since all of the movement activities reserve
the channel resource, we expect greater improvement in per-
formance when using summary information according to the
complexity analyses in the previous section. Activities within
a rover’s hierarchy rarely place reservations on other time-
lines more than once, so the no channel domain corresponds
to the case where summarization collapses no reservations.

Figure 4 (left) exhibits two distributions of problems for
the no channel domain. In most of the cases (points along the

2
2
L

g

E § 8

Summary Information + Aqgregation
CPU seconds

o s 1 15 2 25 3 35 4 a5

Average Depth of Hierarchies in Solution

Figure 5: CPU time for solutions found at varying depths.

y-axis), ASPEN with summary information finds a solution
quickly at some level of abstraction. However, in many cases,
summary information performs notably worse (points along
the x-axis). We find that for these problems finding a solu-
tion required digging deep into the rovers’ hierarchies, and
once it decomposes the hierarchies to these levels, the differ-
ence in the additional time to find a solution between the two
approaches is negligible unless the use of summary informa-
tion found a solution at a slightly higher level of abstraction
more quickly. Thus, the time spent reasoning about summary
information at higher levels incurred unnecessary overhead.
Previous work shows that this overhead is rarely significant
in backtracking planners because summary information can
prune inconsistent search spaces at abstract levels [Clement
& Durfee, 2000]. However, in non-backtracking planners like
ASPEN, the only opportunity we found to prune the search
space at abstract levels was using the FTF heuristic to avoid
greater numbers of conflicts in particular branches. Later, we
will explain why FTF is not helpful in the triangulated field
domains, but is very effective in the corridor domain.

Figure 4 (middle) shows significant improvement for sum-
mary information in the mixed domain compared to the no
channel domain. Adding the channel resource rarely affected
the use of summary information because the collapse in sum-
mary reservations incurred insignificant complexity on top
of the other reservations. However, the channel resource
made the scheduling task noticeably more difficult for AS-
PEN when not using summary information. In the channel
only domain (Figure 4 right), summary information finds so-
lutions at the abstract level almost immediately, but the prob-
lems are still complicated when ASPEN does not use sum-
mary information. These results support the complexity anal-
ysis in the previous section that argues that summary informa-
tion exponentially improves performce when activities within
the same hierarchy make reservations over the same resource
and solutions are found at some level of abstraction.

Figure 5 shows the CPU time required for ASPEN using
summary information for the mixed domain for the depths

6000

5000

3 8 8
2 9 8
8 & &

Summary Information
CPU Seconds

1000

04
:\ 0 2000 4000 6000
‘ Summary Information + FTF CPU Seconds

i

i 1200

Py
~— Alevel-decomp
i 1000 -
— —B level decomp
Lo g

CPU seconds.
@
3
8

|) 5 10 15 20 25 30 35
‘L EMTF Decomposition Rate

Figure 6: Performance using FTF and EMTF vs. level-decomposition heuristics.

at which the solutions are found. The depths are average
depths of leaf activities in partially expanded hierarchies.
The CPU time increases dramatically for solutions found at
greater depths, supporting our claim that finding a solution at
more abstract levels is exponentially easier.

For the triangulated field domain, choosing different paths
to a science location usually did not make a significant dif-
ference in the number of conflicts encountered because if the
rovers crossed paths, all path choices would still lead to con-
flict. In the corridor domain, however, path choices would al-
ways lead down a different corridor to get to the target science
location, so there was usually a path that would avoid a con-
flict and a path that would cause one. Using the FTF heuris-
tic dominated the planner choosing decompositions randomly
for all but two problems (Figure 6 left).

Figure 6 (right) shows the performance of EMTF vs. level
decomposition for different rates of decomposition for three
problems selected from the set. The plotted points are ay-
erages over ten runs for each problem. Depending on the
choice of rate of decomposition (the probability that an ac-
tivity will decompose when a conflict is encountered), per-
formance varies significantly. However, the best decomposi-
tion rate can vary from problem to problem making it diffi-
cult for the domain expert to choose. Our future work will
include investigating the relation of decomposition rates to

performance based on problem structure. *

6 Conclusion

Reasoning about abstract resource reservations exponentially
accelerates finding schedules when reservations collapse dur-
ing summarization, and abstract solutions can be found. Sim-
ilar speedups occur when decomposition branches result in
varied numbers of conflicts. The offline algorithm for sum-
marizing metric resource usage makes these performance
gains available for a larger set of expressive planners and
schedulers. We have shown how these performance advan-
tages can improve ASPEN’s effectiveness when scheduling
the activities of multiple spacecraft. The use of summary in-
formation also enables a planner to preserve decomposition
choices that robust execution systems can use to handle some
degree of uncertainty and failure. We have begun to apply
these techniques to a domain where a collection of satellites,
each with a set of sensors, must schedule individual and team
measurements to meet the conflicting agendas of a group of
scientists. We are also interested in developing protocols to
allow multiple spacecraft planners to coordinate their activi-
ties asynchronously during execution.

*For other experiments, we used a decomposition rate of 20%.

References

[Chien et al, 2000] Chien, S.; Rabideu, G.; Knight, R.; Sherwood,
R.; Engelhardt, B.; Mutz, D.; Estlin, T.; Smith, B.; Fisher, F.;
Barrett, T.; Stebbins, G.; and Tran, D. 2000. Automating space
mission operations using automated planning and scheduling. In
Proc. SpaceOps.

[Clement & Durfee, 1999] Clement, B., and Durfee, E. 1999. The-
ory for coordinating concurrent hierarchical planning agents. In
Proc. AAAL

[Clement & Durfee, 2000} Clement, B., and Durfee, E. 2000. Per-
formance of coordinating concurrent hierarchical planning agents
using summary information. In Proc. ATAL.

[Erol, Hendler, & Nau, 1994] Erol, K.; Hendler, J.; and Nau, D.
1994. Semantics for hierarchical task-network planning. Techni-
cal Report CS-TR-3239, University of Maryland.

[Fikes & J., 19711 Fikes, R. E., and J., N. N. 1971. Strips: A new
approach to the application of theorem proving to problem solv-
ing. Artificial Intelligence 2:189-208.

[Firby, 1989] Firby, J. 1989. Adaptive Execution in Complex Dy-
namic Domains. Ph.D. Dissertation, Yale University.

[Georgeff & Lansky, 1986] Georgeff, M. P., and Lansky, A. 1986.
Procedural knowledge. Proc. IEEE 74(10):1383-1398.

[Huber, 1999] Huber, M. 1999. Jam: a bdi-theoretic mobile agent
architecture. In Proc. Intl. Conf. Autonomous Agents, 236-243.

[Knight, Rabideau, & Chien, 2000] Knight, R.; Rabideau, G.; and
Chien, S. 2000. Computing valid intervals for collections of
activities with shared states and resources. In Proc. 4IPS, 600—
610.

[Knight, Rabideau, & Chien, 2001} Knight, R.; Rabideau, G.; and
Chien, S. 2001. Extending the representational power of model-
based systems using generalized timelines. ISAIRAS (abstract
submitted).

[Knoblock, 1991] Knoblock, C. 1991. Search reduction in hierar-
chical problem solving. In Proc. AAAI, 686—691.

[Korf, 1987] Korf, R. 1987. Planning as search: A quantitative
approach. Artificial Intelligence 33:65-88.

[Lee eral., 1994] Lee, J.; Huber, M. J.; Durfee, E. H.; and Kenny,
P. G. 1994. Umprs: An implementation of the procedural rea-
soning system for multirobot applications. In Proc. AIAA/NASA
Conf. on Intelligent Robotics in Field, Factory, Service, and
Space, 842-849.

[Papadimitriou & Steiglitz, 1998] Papadimitriou, and = Steiglitz.
1998. Combinatorial Optimization - Algorithms and Complexity.
Dover Publications New York.

[Yang, 1990] Yang, Q. 1990. Formalizing planning knowledge for
hierarchical planning. Computational Intelligence 6(1):12-24.

